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Abstract
We characterize all stationary equilibrium point singularity distributions in the
plane of logarithmic type, allowing for real, imaginary or complex singularity
strengths. The dynamical system follows from the assumption that each of theN

singularities moves according to the flow field generated by all the others at that
point. For strength vector �� ∈ R

N , the dynamical system is the classical point
vortex system obtained from a singular discrete representation of the vorticity
field from ideal, incompressible fluid flow. When �� ∈ �, it corresponds to a
system of sources and sinks, whereas when �� ∈ C

N the system consists of spiral
sources and sinks discussed in Kochin et al (1964 Theoretical Hydromechanics
1 (London: Interscience)). We formulate the equilibrium problem as one in
linear algebra, A�� = 0, A ∈ C

N×N , �� ∈ C
N , where A is a N × N

complex skew-symmetric configuration matrix which encodes the geometry
of the system of interacting singularities. For an equilibrium to exist, A must
have a kernel and �� must be an element of the nullspace of A. We prove that
when N is odd, A always has a kernel, hence there is a choice of �� for which
the system is a stationary equilibrium. When N is even, there may or may not
be a non-trivial nullspace of A, depending on the relative position of the points
in the plane. We provide examples of evenly and randomly distributed points
on curves such as circles, figure eights, flower-petal configurations and spirals.
We then show how to classify the stationary equilibria in terms of the singular
spectrum of A.
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1. Introduction

Consider the vector field at z = 0 governed by the complex dynamical system:

ż∗ = �

2π i

1

z
, z(t) ∈ C, � ∈ C, t ∈ R > 0, (1)

where z∗ denotes the complex conjugate of z(t). Letting z(t) = r(t) exp(iθ(t)), � = �r + i�i ,
gives

ṙ = �i

2πr
, (2)

θ̇ = �r

2πr2
, (3)

from which it is easy to see that

r(t) =
√(

�i

2π

)
t + r2(0), (4)

θ(t) =




(
�r

�i

)
ln

((
�r

�i

)
t + r2(0)

)
if �i �= 0

�rt

2πr2(0)
+ θ(0) if �i = 0.

(5)

When �r �= 0, �i = 0, the field is that of a classical point vortex (figures 1(a) and (b)); when
�r = 0, �i �= 0 it is a source (�i > 0) or sink (�i < 0) (figures 1(c) and (d)), while when
�r �= 0, �i �= 0, it is a spiral-source or sink (figures 1(e) and (h).

A collection of N of these point singularities, each located at z = zβ(t), β = 1, . . . , N ,
by linear superposition, produces the field:

ż∗ = 1

2π i

N∑
β=1

�β

z − zβ

; z(t) ≡ x(t) + iy(t) ∈ C, �β ∈ C. (6)

Then, if we advect each by the velocity field generated by all the others1, we arrive at the
complex dynamical system:

ż∗
α = 1

2π i

′N∑
β=1

�β

zα − zβ

; zα(t) ≡ xα(t) + iyα(t) ∈ C, �β ∈ C, (7)

where ′ indicates that β �= α. In this paper we characterize all stationary equilibria of (7),
namely solutions for which ż∗

α(t) = 0. For this, we have the N coupled equations:
′N∑

β=1

�β

zα − zβ

= 0, (α = 1, . . . , N), (8)

where we are interested in positions zα and strengths �α for which this nonlinear algebraic
system is satisfied. Since equation (8) is linear in the �, it can more productively be written
in matrix form

A�� = 0 (9)

where A ∈ C
N×N is evidently a skew-symmetric matrix A = −AT , with entries [aαα] = 0,

[aαβ] = 1
zα−zβ

= −[aβα]. We call A the configuration matrix associated with the interacting

1 One might characterize this dynamical assumption by saying that each singularity ‘goes with the flow’.
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Figure 1. All possible flowfields at the singular point z = 0 associated with the dynamical
system (1).

particle system (7). The collection of points {z1(0), z2(0), . . . , zN(0)} in the complex plane
is called the configuration. From (9), we can conclude that the points zα are in a stationary
equilibrium configuration if det(A) = 0, i.e. there is at least one zero eigenvalue of A. If
the corresponding eigenvector is real, the configuration is made up of point vortices. If it is
imaginary, it is made up of sources and sinks. If it is complex, it is made up of spiral sources
and sinks. Note also that if dz∗

α

dt
= 0, then one can prove that dnz∗

α

dtn
= 0 for any n. It follows that:

Proposition 1. For a given configuration of N points {z1, z2, . . . , zN } in the complex plane,
there exists a set of singularity strengths �� for which the configuration is a stationary
equilibrium solution of the dynamical system (7) iff A has a kernel, or equivalently, if there is
at least one zero eigenvalue of A. If the nullspace dimension of A is one, i.e. there is only one
zero eigenvalue, the choice of �� is unique (up to a multiplicative constant). If the nullspace
dimension is greater than one, the choice of �� is not unique and can be any linear combination
of the basis elements of null(A).

The equilibria we consider in this paper all have one-dimensional nullspaces and odd N . The
more delicate cases of equilibria with higher dimensional nullspaces and even N are deferred
to a separate study.

We mention here work of Campbell and Kadtke (1987) and Kadtke and Campbell (1987)
in which a different technique is described to find stationary solutions to (7), and O’Neil’s
work (1987) based on his PhD thesis. Others have considered various dynamical questions
associated with different types of singularities in the plane (other than the large literature on
point-vortex singularities), mostly using the ‘fluid dynamics’ assumption that the singularities
go with the flow. In this context, works of Novikov and Sedov (1983), Novikov and Novikov
(1996), Novikov (2003), Yanovsky et al (2009), Tur et al (2011) and Llewellyn Smith (2011)
are most relevant and interesting. We point out, however, that other dynamical assumptions
could be used and would lead to different dynamical systems.

2. General properties of the configuration matrix

Since A is skew-symmetric, it follows that

det(A) = det(−AT ) = (−1)N det(AT ) = det(AT ). (10)

Hence, for N odd, we have − det(AT ) = det(AT ), which implies det(AT ) = 0.
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Proposition 2. When N is odd, A always has at least one zero eigenvalue, hence for any
configuration there exists a choice �� ∈ C for which the system is a stationary equilibrium.

When N is even, there may or may not be a stationary equilibrium, depending on whether
or not A has a non-trivial nullspace. In general, we would like to determine a basis set for
the nullspace of A for a given configuration, i.e. the set of all strengths for which a given
configuration remains fixed. Other important general properties of skew-symmetric matrices
are listed below:

(i) The eigenvalues always come in pairs ±λ. If N is odd, there is one unpaired eigenvalue
that is zero.

(ii) If N is even, det(A) = Pf (A)2 � 0, where Pf is the Pfaffian.
(iii) Real skew-symmetric matrices have pure imaginary eigenvalues.

Recall that every matrix can be written as the sum of a Hermitian matrix (B = B†) and a
skew-Hermitian matrix (C = −C†). To see this, note

A ≡ 1
2 (A + A†) + 1

2 (A − A†). (11)

Here, B ≡ 1
2 (A + A†) = B† and C ≡ 1

2 (A − A†) = −C†. A matrix is normal if AA† = A†A,
otherwise it is non-normal. If we calculate AA† − A†A, where A = B + C as above, then it
is easy to see that

AA† − A†A = 2(CB − BC). (12)

Therefore, if B = 0 or C = 0, A is normal.

Proposition 3. All Hermitian or skew-Hermitian matrices are normal.

The generic configuration matrix A arising from (9) is, however, non-normal.

2.1. Spectral decomposition of normal and non-normal matrices

For normal matrices, the following spectral decomposition holds.

Proposition 4. A is a normal matrix ⇔ A is unitarily diagonalizable, i.e.

A = Q�Q† (13)

where Q is unitary.

Here, the columns of Q are the N linearly independent eigenvectors of A that can be
made mutually orthogonal. The matrix � is a diagonal matrix with the N eigenvalues down
the diagonal. See Golub and Van Loan (1996) for details.

In general, however, for the system of interacting particles governed by (8), (9), A ∈ C
N×N

will be a non-normal matrix. The most comprehensive decomposition of A in this case is the
singular value decomposition (Golub and Van Loan (1996), Trefethen and Bau (1997)). It is a
factorization that greatly generalizes the spectral decomposition of a normal matrix, and it is
available for any matrix.

The N singular values, σ (i) (i = 1, . . . , N), of A, are non-negative real numbers that
satisfy

Av(i) = σ (i)u(i); A†u(i) = σ (i)v(i), (14)
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where u(i) ∈ C
N and v(i) ∈ C

N . The vector u(i) is called the left-singular vector associated
with σ (i), while v(i) is the right-singular vector. In terms of these, the matrix A has the
factorizations

A = U	V † =
k∑

i=1

σ (i)u(i)v(i)T , (k � N) (15)

where U ∈ C
N×N in unitary, V ∈ C

N×N is unitary, and 	 ∈ R
N×N is diagonal. (15) is

the non-normal analogue of the spectral decomposition formula (13) where the summation
term on the right-hand side gives an (optimal) representation of A as a linear combination of
rank-one matrices with weightings governed by the singular values ordered from largest to
smallest. Here, the rank of A is k. The columns of U are the left-singular vectors u(i), while
the columns of V are the right-singular vectors v(i). The matrix 	 is given by

	 =




σ (1) · · · 0
. . .

0 · · · σ (N)


 ∈ R

N×N. (16)

The singular values can be ordered so that σ (1) � σ (2) � . . . � σ (N) � 0 and one or more
may be zero. As is evident from multiplying the first equation in (14) by A† and the second
by A,

(A†A − σ (i)2)v(i) = 0; (AA† − σ (i)2)u(i) = 0, (17)

the singular values squared are the eigenvalues of the covariance matrices A†A or AA†, which
have the same eigenvalue structure, while the left-singular vectors u(i) are the eigenvectors of
AA†, and the right-singular vectors v(i) are the eigenvectors of A†A. From (14), we also note
that the right-singular vectors v(i) corresponding to σ (i) = 0 form a basis for the nullspace
of A. Because of (9), we seek configuration matrices with one or more singular values that
are zero.

3. Collinear equilibria

For the special case in which all the particles lie on a straight line, there is no loss in assuming
zα = xα ∈ R. Then A ∈ R

N×N , A is a normal skew-symmetric matrix, and the eigenvalues are
pure imaginary. As an example, consider the collinear case N = 3. Let the particle positions
be x1 < x2 < x3, with corresponding strengths �1, �2, �3. The A matrix is then given by

A =




0
1

x1 − x2

1

x1 − x3
1

x2 − x1
0

1

x2 − x3
1

x3 − x1

1

x3 − x2
0


 . (18)

Since N is odd, we have det(A) = 0. The other two eigenvalues are given by

λ123 = ±i

√
1

(x2 − x1)2
+

1

(x3 − x2)2
+

1

(x3 − x1)2
, (19)

which is invariant under cyclic permutations of the indices (λ123 = λ231 = λ312). We can scale
the length of the configuration so that the distance between x1 and x3 is one, hence without
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Figure 2. N = 3 evenly distributed point vortices on a line with strengths �1 = 1, �2 = − 1
2 ,

�3 = 1, in equilibrium. The far field is that of a point vortex at the centre of vorticity of the system.
Solid streamline pattern is for point vortices, dashed streamline pattern is for source/sink system.
The patterns are orthogonal.

loss of generality, let x1 = 0, x2 = x, x3 = 1. The other two eigenvalues are then given by the
formula

λ = ±i

√
(1 − x + x2)2

x2(1 − x)2
. (20)

It is easy to see that the numerator has no roots in the interval (0, 1), hence the nullspace
dimension of A is one. The nullspace vector is then given (uniquely up to multiplicative
constant) by

�� =




1

−
(

x3 − x2

x3 − x1

)
(

x3 − x2

x2 − x1

)

 . (21)

For the special symmetric case x3 − x1 = 1, x3 − x2 = 1/2, x2 − x1 = 1/2, we have
�1 = 1, �2 = −1/2, �3 = 1. We show this case in figure 2 along with the separatrices
associated with the corresponding flowfield generated by the singularities. Since the sum of
the strengths of the three vortices is �1 + �2 + �3 = 1 − 1/2 + 1 = 3/2, the far field is that of
a point vortex of strength � = 3/2. Interestingly, for the collinear cases, since A is real, the
nullspace vector is either real, or if multiplied by i, is pure imaginary. Hence, each collinear
configuration of point vortices obtained with a given �� ∈ R is also a collinear configuration of
sources/sinks with corresponding strengths given by i��. The corresponding streamline pattern
for the source/sink configuration, as shown in the dashed curves of figure 2, is the orthogonal
complement of the curves corresponding to the point-vortex case.

For N even, we cannot say a priori whether or not det(A) = 0 as the case for N = 2
shows. For this, the A matrix is

A =


 0

1

x1 − x2
1

x2 − x1
0


 =


 0

1

d

− 1

d
0


 . (22)

The eigenvalues are λ = ±i/d , hence there is no equilibrium (except in the limit d → ∞).
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Figure 3. (a) N = 7 evenly distributed point vortices on a line. The far field is that of a point
vortex at the centre of vorticity of the system. Because of the symmetry of the spacing, the vortex
strengths are symmetric about the central point x4 which also corresponds to the centre of vorticity.
(b) N = 7 randomly distributed point vortices on a line. The far field is that of a point vortex at
the centre of vorticity of the system.

We show in figures 3(a) and (b) two representative examples of collinear stationary point-
vortex equilibria for N = 7, along with their corresponding global streamline patterns. In
figure 3(a) we deposit seven evenly spaced points on a line and solve for the nullspace vector
to obtain the singularity strengths (ordered from left to right)

�� = (1.0000, −0.5536, 0.9212, −0.5797, 0.9212, −0.5536, 1.0000), (23)∑
α

�α = 2.1555. (24)

Because of the even spacing, the strengths are symmetric about the central point x4 (�1 =
�7, �2 = �6, �3 = �5), which is also the location of the centre of vorticity

∑7
α=1 �αxα .

Figure 3(b) shows a fixed equilibrium corresponding to seven points randomly placed on a
line. The nullspace vector for this case is (ordered from left to right)

�� = (1.0000, −0.5071, 0.5342, −0.4007, 0.2815, −0.2505, 1.0743), (25)∑
α

�α = 1.7317. (26)

In both cases, the singularities are all point vortices (or source/sink systems) hence are examples
of collinear equilibria such as those discussed in Aref (2007a, 2007b, 2009) and Aref et al
(2003) where the strengths are typically chosen as equal. The streamline pattern at infinity in
both cases is that of a single point vortex of strength

∑7
α=1 �α �= 0 located at the centre of

vorticity
∑7

α=1 �αxα .

4. Triangular equilibria

The case N = 3 is somewhat special and worth treating separately. Given any three points
{z1, z2, z3} in the complex plane, the corresponding configuration matrix A is

A =




0
1

z1 − z2

1

z1 − z3
1

z2 − z1
0

1

z2 − z3
1

z3 − z1

1

z3 − z2
0


 . (27)
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There is no loss of generality in choosing two of the points along the real axis, one at the origin
of our coordinate system, the other at x = 1. Hence we set z1 = 0, z2 = 1, and we let z3 ≡ z.
Then A is written much more simply:

A =




0 −1 −1

z

1 0
1

1 − z
1

z

1

z − 1
0


 . (28)

Since N is odd, one of the eigenvalues of A is zero. The other two are given by

λ = ±i

√
1

z2
+

1

(1 − z)2
+ 1 = ±i

√
(1 − z + z2)2

z2(1 − z)2
. (29)

When the numerator is not zero, the nullspace dimension is one and it is easy to see that the
nullspace of A is given by

�� =




1

z − 1

−1

z
1


 . (30)

However, the numerator is zero at the points:

z = exp

(
π i

3

)
, exp

(
5π i

3

)
, (31)

at which �z = 1
2 , �z = ±

√
3

2 . This forms an equilateral triangle in which case the nullspace
dimension is three. We have thus proven the following.

Proposition 5. For three point vortices, or for three sources/sinks, the only stationary equilibria
are collinear. In this case, the nullspace dimension of A is one and is given by (30). For the
equilateral triangle configuration, the nullspace dimension is three.

We show a fixed equilibrium equilateral triangle state in figure 4(a) along with the
corresponding streamline pattern. Figures 4(b), (c) and (d) show examples of N = 3 triangular
states that are not equilateral.

5. Equilibria along prescribed curves

We now ask a more general and interesting question. Given any curve in the complex plane,
if we distribute points {zα}, (α = 1, . . . , N) along the curve, is it possible to find a strength
vector �� so that the configuration is stationary? The answer is yes, if N is odd, and sometimes,
if N is even.

Figures 5–9 show a collection of stationary equilibria along curves that we prescribe.
First, figure 5 shows 7 points placed randomly in the plane, with the singularity strengths
obtained from the nullspace of A so that the system is in equilibrium. The strengths are
given by �� = (1.0000, −0.7958 + 1.0089i, −1.3563 − 0.4012i, 0.0297 + 0.1594i, 0.9155 +
0.3458i, −2.0504 − 0.8776i, −0.1935 − 1.0802i)T with the sum given by −2.4508 −
0.8449i. Thus, the far field is that of a spiral-sink configuration. Figure 6(a) shows
the case of N = 7 points distributed evenly around a circle. The nullspace vector is
given by �� = (1.0000, −0.9010 + 0.4339i, 0.6235 − 0.7818i, −0.2225 + 0.9749i, −0.2225
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(a) (b)

(c) (d)

Figure 4. (a) N = 3 equilateral triangle configuration with corresponding streamline pattern. The
strengths are given by �1 = 1.0000, �2 = −0.5000 + 0.8660i, �3 = −0.5000 + 0.8660i. (b)
N = 3 non-equilateral triangular state with corresponding streamline pattern. The strengths are
given by �1 = 1.0000, �2 = 0.3077 + 0.4615i, �3 = −0.3200 − 0.2400i. (c) N = 3 obtuse
isosceles triangle state. The strengths are given by �1 = 1.0000, �2 = −1.6000 + 0.8000i,
�3 = −1.6000 − 0.8000i. (d) N = 3 acute isosceles triangle state. The strengths are given by
�1 = 1.0000, �2 = −0.0308 + 0.2462i, �3 = −0.0308 − 0.2462i.

−0.9749i, 0.6235 + 0.7818i, −0.9010 − 0.4339i)T . For this very symmetric case, the sum of
the strengths is zero, hence in a sense, the far field vanishes. Figure 6(b) shows the case
of N = 7 points placed at random positions on a circle. Here, the nullspace vector is
given by �� = (1.0000, −0.6342 + 0.4086i, 0.3699 − 0.5929i, −0.1501 + 0.6135i, −0.2483 −
0.9884i, 0.2901 + 0.3056i, −0.3595 − 0.2686i)T . The random placement of points breaks
the symmetry of the previous case and the sum of strengths is given by 0.2649 − 0.5222i
which corresponds to a spiral-sink. In figure 7 we show equilibrium distribution of
points along a curve we call a ‘flower-petal’, given by the formula r(θ) = cos(2θ),
0 � θ � 2π . In figure 7(a) we distribute them evenly on the curve, while in figure 7(b)
we distribute them randomly. The particle strengths from the configuration in figure 7(a)
are �� = (1.0000, 0.1824 + 0.1498i, −0.9892 − 0.9103i, −0.1378 − 0.5333i, −0.1378 +
0.5333i, −0.9892+0.9103i, 0.1824−0.1498i)T with sum equaling −0.8892 corresponding to
a far field point vortex. Figure 7(b) shows particles distributed randomly on the same flower-
petal curve. Here, the particle strengths are �� = (1.0000, 0.2094 − 0.4071i, −0.3009 +
0.3003i, 0.0404 − 0.2864i, −0.1779 + 0.2773i, 0.4236 + 0.8052i, −0.4702 − 0.3304i)T , with
sum given by .7244+ .3589i. Hence the far field corresponds to a source-spiral. We note that it
is interesting that the far field behaviour is determined both by the distribution of points along
the curve as well as the shape of the curve for these relatively small values of N . We suspect



504 P K Newton and V Ostrovskyi

Figure 5. Stationary equilibrium for seven points placed at random locations in the plane. The far
field is a spiral-sink (figure 1(e)) with

∑
�α = −2.4508 − 0.8449i.

that as N increases, thus filling out the curve shape more effectively, the far field behaviour
will indeed be dictated more and more by the shape of the curve being filled out.

Figure 8(a) shows N = 7 points distributed evenly on a spiral curve given by r(θ) =
θ/6. The particle strengths are given by �� = (1.0000, −0.3849 + 0.3476i, 0.4891 −
0.5497i, 0.0621 + 0.4829i, −0.1117 − 0.5650i, 0.3174 + 0.1044i, −0.4743 − 0.0839i)T with
sum equaling 0.8976−0.2636i. Figure 8(b) shows the points distributed randomly on the spiral
curve. The particle strengths are �� = (1.0000, −0.5784+0.2279i, 0.9560−1.1986i, 0.0535+
0.1732i − 0.0563 − 0.1759i0.4595 + 0.0514i − 0.4483 + 0.0235i)T , with sum given by
1.3861 − 0.8985i. Hence the far field in both cases corresponds to a source-spiral.

The last two configurations, shown in figures 9(a) and (b), are equilibria distributed
along figure eight curves, given by the formulae r(θ) = cos2(θ), 0 � θ � 2π . In
figure 9(a) we distribute the points evenly around the curve, which gives rise to strengths �� =
(1.0000, −0.2734 + 0.5350i, 0.0239 − 0.2080i, 0.1063 − 0.0517i, 0.1063 + 0.0517i, 0.0239 +
0.2080i, −0.2734 − 0.5350i)T , whose sum is 0.7136, thus a far field point vortex. In
contrast, when the points are distributed randomly around the same curve, as in figure 9(b),
the strengths are given by �� = (1.0000, −0.1054 + 0.5724i, −0.0174 − 0.4587i, 0.9208 +
1.2450i, −0.0460 − 0.4577i, −0.5292 + 0.2371i, −0.2543 − 0.0921i)T , with sum equaling
0.9685+1.0460i, hence a far field source-spiral. As in the flower petal example, the distribution
of points along the curve changes the far field behaviour.

6. Classification of equilibria in terms of the singular spectrum

Previously, the nullspace of A was used to produce stationary equilibria along prescribed curves
in the plane. Here we describe how to use the non-zero singular spectrum of A to classify
the equilibria when A has a kernel, which is useful due to the fact that when one allows for
general particle strengths, there exist many equilibria. Categorizing them so that quantitative
comparisons can be made becomes increasingly more important as N increases. Here we
introduce some important spectral diagnostics for this purpose.

Let σ (i), i = 1, . . . , k < N denote the non-zero singular values of the configuration matrix
A, arranged in descending order σ (1) � σ (2) � · · · � σ (k) > 0. First we normalize each of
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Figure 6. (a) N = 7 evenly distributed points on a circle (dashed curve) in equilibrium.
Because of the symmetry of the configuration,

∑
�α = 0, hence the far field vanishes. (b)

N = 7 randomly distributed particles on a circle (dashed curve) in equilibrium along with the
corresponding streamline pattern. The far field streamline pattern is that of a spiral-sink (figure 1(g))
since

∑
�α = 0.2649 − 0.5222i.

Figure 7. (a) N = 7 evenly distributed particles in equilibrium on the curve r(θ) = cos(2θ)

(dashed curve) along with the corresponding streamline pattern. The far field corresponds to a
point vortex since

∑
�α = −0.8892. (b) N = 7 randomly distributed particles in equilibrium on

the curve r(θ) = cos(2θ) (dashed curve). The far field corresponds to a source-spiral (figure 1(f ))
since

∑
�α = 0.7244 + 0.3589i.

the singular values so that they sum to one:

σ̂ (i) ≡ σ (i)

/ k∑
j=1

σ (j). (32)

Then
k∑

i=1

σ̂ (i) = 1, (33)

and the string of k numbers arranged from largest to smallest: (σ̂ (1), σ̂ (2), . . . , σ̂ (k)) is the
‘spectral representation’ of the equilibrium which can also be thought of as a probability
distribution because of the normalization. The rate at which the σ̂

′(i)s (i = 1, . . . , k) decay
from largest to smallest is encoded in a scalar quantity called the Shannon entropy, S, of the
matrix (see Shannon (1948) and more recent discussions associated with vortex lattices in



506 P K Newton and V Ostrovskyi

Figure 8. (a) N = 7 evenly distributed particles in equilibrium on the curve r(θ) = θ/6 (dashed
curve) along with the corresponding streamline pattern. The far field corresponds to a source-
spiral (figure 1(f )) since

∑
�α = 0.8976 − 0.2636i. (b) N = 7 randomly distributed particles in

equilibrium on the curve r(θ) = θ/6 (dashed curve). The far field corresponds to a source-spiral
(figure 1(f )) since

∑
�α = 1.3861 − 0.8985i.

Figure 9. (a) N = 7 evenly distributed particles in equilibrium on the curve r(θ) = cos2(θ)

(dashed curve). The far field corresponds to a point vortex since
∑

�α = 0.7136. (b) N = 7
randomly distributed particles in equilibrium on the curve r(θ) = cos2(θ) (dashed curve). The far
field corresponds to a source-spiral (figure 1(f )) since

∑
�α = 0.9685 + 1.0460i.

Newton and Chamoun (2009)):

S = −
k∑

i=1

σ̂ (i) log σ̂ (i). (34)

With this representation, spectra that drop off rapidly from highest to lowest, are ‘low-entropy
equilibria’ (‘pure’ states using the analogy of von Neumann entropy from quantum mechanics),
whereas those that drop off slowly (even distribution of normalized singular values) are
‘high-entropy equilibria’ (‘maximally mixed’ states using the terminology of von Neumann
entropy). Note that from the representation (15), low-entropy equilibria have configuration
matrix representations that are dominated in size by a small number of terms, whereas the
configuration matrices of high-entropy equilibria equilibria have terms that are more equal in
size. See Newton and Chamoun (2009) for more detailed discussions in the context of relative
equilibrium configurations, and the original report of Shannon (1948) which has illuminating
discussions of entropy, information content, and its interpretations with respect to randomness.
An entry into discussions of ‘von Neumann entropy’, which in some ways is more relevant
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Figure 10. Singular spectrum (normalized) for N = 7 particles placed randomly along a figure
eight planar curve (i.e. the equilibrium configuration shown in figure 9(b)). Singular values are
grouped in pairs (except for the zero value) due to the skew-symmetry of the configuration matrix.

Table 1. Singular spectrum of triangular states (N = 3).

Configuration σ (unormalized) σ (normalized) Shannon entropy

Equilateral 1.0000 0.5000 0.6931
1.0000 0.5000
0.00 0.00

Isosceles (acute) 1.0598 0.5000 0.6931
1.0598 0.5000
0.00 0.00

Isosceles (obtuse) 2.7203 0.5000 0.6931
2.7203 0.5000
0.00 0.00

Arbitrary triangle 1.2115 0.5000 0.6931
1.2115 0.5000
0.00 0.00

to our usage here, can be found in http://en.wikipedia.org/wiki/Von Neumann entropy. As an
example of the normalized spectral distribution associated with the figure eight equilibrium
shown in figure 9, we show in figure 10 the 7 singular values (including the zero one) associated
with a random placement of points along the figure eight leading to an equilibrium. The fact
that they are grouped in pairs follows from the skew-symmetry of A which implies that the
eigenvalues come in pairs ±λ. Since the singular values are the squares of the eigenvalues, it
follows that there are two of each of the non-zero ones.

Tables 1–6 show the complete singular spectrum for all the equilibria considered in this
paper. Note that both the shape of the curve and the distribution of points along the curve
determine whether this measure of ‘entropy’ is higher or lower for randomly distributed
points versus evenly distributed points for a given curve and value of N . Particularly relevant
is the smallest non-zero singular value associated with the equilibrium (see, for example,
Trefethen and Embree (2005)), as that is a common measure of ‘robustness’ associated with
the configuration matrix, sometimes called the ‘spectral gap’. This diagnostic is related to the
concept of ‘pseudo-spectrum’ of A, as described in Trefethen and Embree (2005) and will be
further developed in the future to characterize the ‘robustness’ of the equilibrium.

http://en.wikipedia.org/wiki/Von_Neumann_entropy
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Table 2. Singular spectrum of collinear states (N = 3, 7).

Configuration σ (unormalized) σ (normalized) Shannon entropy

N = 3 4.5000 0.5000 0.6931
4.5000 0.5000
0.00 0.00

N = 7 (even) 2.5249 0.3214 1.5237
2.5249 0.3214
1.6831 0.1428
1.6831 0.1428
0.8420 0.0357
0.00 0.00

N = 7 (random) 6.3408 0.4457 1.0723
6.3408 0.4457
2.0969 0.0487
2.0969 0.0487
0.7062 0.0055
0.7062 0.0055
0.0000 0.0000

Table 3. Singular spectrum of circular states (N = 7).

Configuration σ (unormalized) σ (normalized) Shannon entropy

N = 7 (even) 3.0000 0.3214 1.5236
3.0000 0.3214
2.0000 0.1429
2.0000 0.1429
1.0000 0.0357
1.0000 0.0357
0.0000 0.0000

N = 7 (random) 3.7954 0.3363 1.4700
3.7954 0.3363
2.4250 0.1373
2.4250 0.1373
1.0631 0.0264
1.0631 0.0264
0.0000 0.0000

7. Discussion

In this paper we describe a new method for finding and classifying stationary equilibrium
distributions of point singularities of source/sink, point vortex, or spiral source/sink type in
the complex plane under the dynamical assumption that each point ‘goes with the flow’.
This dynamical assumption arises in point vortex dynamics through the vorticity ‘advection’
equation,

�ωt + �u · ∇ �ω = 0, (35)

where �ω is represented by a linear combination of Dirac masses (see Newton (2001)). The
corresponding partial differential equation for the source-sink-vortex system that ‘goes with the
flow’ has not been developed and analysed but presumably would not have the Hamiltonian
features associated with pure point vortex (i.e. discrete Euler flow) dynamics. We provide
examples of configurations placed at random points in the plane, at prescribed points, or lying
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Table 4. Singular spectrum of figure eight states (N = 7).

Configuration σ (unormalized) σ (normalized) Shannon entropy

N = 7 (even) 11.9630 0.4664 0.9651
11.9630 0.4664

3.0001 0.0293
3.0001 0.0293
1.1454 0.0043
1.1454 0.0043
0.0000 0.0000

N = 7 (random) 6.9337 0.3465 1.3929
6.9337 0.3465
4.4357 0.1418
4.4357 0.1418
1.2769 0.0117
1.2769 0.0117
0.0000 0.0000

Table 5. Singular spectrum of flower states (N = 7).

Configuration σ (unormalized) σ (normalized) Shannon entropy

N = 7 (even) 5.9438 0.4447 1.1034
5.9438 0.4447
1.8115 0.0413
1.8115 0.0413
1.0538 0.0140
1.0538 0.0140
0.0000 0.0000

N = 7 (random) 8.0780 0.3875 1.3393
8.0780 0.3875
3.8900 0.0899
3.8900 0.0899
1.9523 0.0226
1.9523 0.0226
0.0000 0.0000

along prescribed curves, and find the particle strengths so that the configuration is a stationary
equilibrium. This last situation is reminiscent of a classical technique for enforcing boundary
conditions along arbitrarily shaped boundaries embedded in fluid flows. These techniques
are generically referred to as singularity distribution methods. See, for example, Katz and
Plotkin (2001) and Cortez (1996, 2000) for applications and discussions of these methods in
the context of potential flow, hence inviscid boundary conditions, and Cortez (2001) in the
context of Stokes flow, hence viscous boundary conditions. For these problems, the positions
of the points are fixed to lie along the given boundary, and the strengths are then judiciously
chosen to enforce the relevant inviscid or viscous boundary conditions. As in Cortez (2001),
it would be of interest to ‘regularize’ the point singularities (1.1) and ask if the methods in this
paper can be extended to smoothed out singularities as would a separate analysis associated
with the linear and nonlinear stability theory for the stationary equilibria described in this paper
about which currently nothing is known. Finally, we mention an interesting paper by O’Neil
(2009) which derive several relative equilibria vortex sheets which one can think of as the limit
N → ∞ of an N -point vortex problem, with vortex strengths suitably chosen. Whether or not
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Table 6. Singular spectrum of spiral states (N = 7).

Configuration σ (unormalized) σ (normalized) Shannon entropy

N = 7 (even) 6.5969 0.4047 1.2658
6.5969 0.4047
2.9237 0.0795
2.9237 0.0795
1.3031 0.0158
1.3031 0.0158
0.0000 0.0000

N = 7 (random) 16.0086 0.4398 1.1024
16.0086 0.4398

5.5884 0.0536
5.5884 0.0536
1.9593 0.0066
1.9593 0.0066
0.0000 0.0000

some of the stationary configurations derived in this manuscript can be extended to the vortex
sheet limit so as to maintain the delicate balance that must exist between the global shape of
the curve and the choice of singularity strengths is a question we are currently pursuing.
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